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1 Introduction
We developed software to approximate viability kernels and compute resilience values
using Support Vector Machines (SVMs). In this version:

• we use a regular grid (an active learning algorithm will come in a forthcoming
version);

• the capture basins and resilience values are computed in dimension d + 1 (the
computation in dimension d will come in a forthcoming version);

• we can define heavy controllers.

The software is written in the Java programming language. The software has two modes:
a GUI mode and a batch mode.

2 Glossary
• Viability kernel (Viab(K)): set of all the points x for which there exists at least

one control function t → u(t) such that the whole evolution starting from x al-
ways remains in the viability constraint set K.

• Capture basin (Capt(K,C)): set of states for which there exists at least one tra-
jectory that reaches a target C in finite time, without leaving K.

• Resilience values: computed as the inverse of restauration cost. Inside the via-
bility kernel; the cost is null, if there exists a trajectory that allows the system to
come back to K, the cost is finite and its value is a function of the time needed
to restore the system; if there is no control function that allows the restauration of
the system, the cost is infinite.

• Heavy controller: keep the control constant as long as the system stays inside
the viability kernel and change it only when the system reaches the boundary on
the kernel, by choosing the first control that keeps the system inside V iab(K).

• SVMs: classification procedures that define a separating hypersurface between
examples xi, associated with their label yi. SVM training provides function:

f(x) =
n∑

i=1

αiyik(x, xi) + b.

The points xi for which αi > 0 are called support vectors. The sign of the function
f(x) gives the label of the point x. k(x, xi) is called kernel, for example the
gaussian kernel has the following expression:

k(x, xi) = exp
(
−γ ‖ x− xi ‖2

)
, (1)

where γ > 0 is a parameter.
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3 Installation

3.1 Prerequisites
To run the java program, you need to install first:

• Java virtual machine (Sun’s JRE environnement 5 or later compulsory), down-
loadable at
http://java.sun.com/javase/downloads/index.jsp

The program can be run on Windows (Linux ?). The software version 1.0 is provided as

• a .jar file (SVMVC v1.0.jar), for users who only want to test the models already
implemented in the version 1.0;

• a .zip file (SVMVC v1.0.zip), for users who want to implement their own models
on the software.

3.2 Installation
The file SVMVC v1.0.jar is a java executable file. It runs the software with the Graph-
ical User Interface.

For users who want to implement their own model, unzip the file SVMVC v1.0.zip
to a new directory named SVMVC v1.0. The directory now contains

<bin> Subdirectory contains the binary files of the program
<dist> Subdirectory contains the SVMVC v1.0.jar file
<doc> Subdirectory contains the javadoc for package model
<lib> Subdirectory contains some libraries used by the software
<src> Subdirectory contains the source code
*.simu Files text files that can be used to run the software in batch mode
license File license of the program

3.3 Run the program
Double click on the SVMVC v1.0.jar file. You should have the GUI represented in
figure 1.

For users who wish to implement their own models, a program like Eclipse (down-
loadable at http://www.eclipse.org/downloads/) can be used to modify the
source code. The files included in the <lib> subdirectory must also be included on the
build path.
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Figure 1: Software in the GUI mode
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4 Description of the models
Some models are already implemented in the software. This part gives a description of
the dynamics of them, and their viability constraint set.

4.1 Population system [Aubin, 2002]
We consider a simple dynamical system of population growth on a limited space. The
state (x(t), y(t)) of the system represents the size of a population x(t), which grows or
diminishes with the evolution rate y(t) ∈ [d; e]. The size of the population must remain
in an interval K = [a, b], with a > 0. The inertia bound c limits the derivative of the
evolution rate at each time step. The system in discrete time defined by a time interval
dt can be written as follows:

x(t + dt) = x(t) + x(t)y(t)dt (2)
y(t + dt) = y(t) + u(t)dt (3)

with −c ≤ u(t) ≤ +c. The viability constraint set is the set K = [a; b] × [d; e]. For
example, we can use the following parameters: a = 0.2, b = 3, c = 0.5, d = −2, e = 2.

4.2 Consumption system [Aubin, 1991]
The problem is a consumption problem, defined in 2 dimensions x(t) and y(t). Variable
x(t) represents the consumption of a raw material and y(t) its price. The price evolution
between two time steps is bounded. The viability constraint set is the set K = [a; b] ×
[d; e]. The dynamics represent the consumption of the raw material, limited by prices:

x(t + dt) = x(t) + (x(t)− y(t))dt (4)
y(t + dt) = y(t) + u(t)dt, (5)

with −c ≤ u(t) ≤ +c. For example, we can use the following parameters: a = 0,
b = 2, c = 0.5, d = 0, e = 3.

4.3 Language system [Abrams and Strogatz, 2003]
We consider the Abrams-Strogatz model of language competition. Two languages A
and B are in competition and it is supposed that individuals speak only one language.
σA (resp σB, with σB = 1− σA) is the density of speakers of language A (resp B). The
language dynamics is given by:

σ′A = (1− σA)σA(σa−1
A s− (1− σA)a−1(1− s)), (6)

where s is a parameter which is in [0, 1]. It measures the social status, the prestige of
language A or the politics in favor of language A. The prestige of language B is 1− s.
For instance, if s = 0, the prestige of language A is null and the prestige of language
B is maximal and if s = 1, this is the opposite. a is a parameter that represents the
volatility of language A.
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We want to examine the conditions in which the coexistence of speakers of A and B is
possible. More precisely, we would like to keep the minority language above the density
b. We suppose that the prestige s can change and we include it as a state variable. The
state space is therefore bidimensionnal (σA, s). Moreover, we suppose that the change
of prestige during a given time step is limited: −c ≤ s′ ≤ c. Therefore, we get the
following system:

σ′A = (1− σA)σA(σa−1
A s− (1− σA)a−1(1− s))

−c ≤ s′ ≤ c
b ≤ σA ≤ 1− b
0 ≤ s ≤ 1.

(7)

and K = [b; 1−b]× [0; 1]. For example, we can use the following parameters: a = 1.31,
b = 0.2, c = 0.1.

4.4 Lake system [Carpenter et al., 1999]
The system under consideration encompasses a lake and the farming activities in its
watershed. The model combines an ecosystem model of phosphorus dynamics and a
controlled model for phosphorus input dynamics. Dynamic of phosphorus in water
follows the model:

dP (t)

dt
= −bP (t) + L(t) + r

P (t)q

P (t)q + mq
, (8)

where P is the mass of phosphorus in the lake water, b is the rate of phosphorus elimi-
nation at each time step, m is the P mass in the water for which recycling is half of the
maximum rate r. Parameter q sets the steepness of the recycling versus P curve when
P ≈ m. L(t) represents the inputs of phosphorus that come from human activities. We
suppose that the lake manager can act directly on the time variation through control u,
with u bounded because modifications take time:

dL(t)

dt
= u, with u ∈ [Lmin, Lmax]. (9)

We also assume that an oligotrophic lake becomes eutrophic when the amount of phos-
phorus in the water increases over some fixed threshold Pmax. We suppose that farmers’
benefit depends linearly on the inputs of phosphorus. Consequently, profitability is
reached when the value of phosphorus inputs is higher than a given threshold Lmin and
lower than the maximal legal value Lmax.
The system is thus 2-dimensional:

dP (t)
dt

= −bP (t) + L(t) + r P (t)q

P (t)q+mq .
dL(t)

dt
= u,

(10)

and K = [Lmin; Lmax]× [0; Pmax]. For example, we can use the following parameters:
Lmin = 0.1, Lmax = 1, Pmax = 0.5, c = 0.1, q = 8, r = 1, m = 1, b = 0.8.
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4.5 Bilingual system [Minett and Wang, IP]
In this model, we consider the existence of bilingual individuals. We note: σA is the
density of speakers of language A, σB is the density of speakers of language B, σAB is
the density of speakers of language A and B. The language dynamics is given by this
model proposed by Minett-Wang (eliminating variable σAB):

σ′A = (1− σA − σB)(1− σB)as− σAσa
B(1− s) (11)

σ′B = (1− σA − σB)(1− σA)a(1− s)− σBσa
As. (12)

As in the previous language model, we suppose we want to keep both languages above
a threshold density b, and that the absolute value of the prestige derivative cannot be
larger than c. So we have the following system:

σ′A = (1− σA − σB)(1− σB)as− σAσa
B(1− s)

σ′B = (1− σA − σB)(1− σA)a(1− s)− σBσa
As

−c ≤ s′ ≤ c
b ≤ σA ≤ 1− b
b ≤ σB ≤ 1− b
σA + σB ≥ 1
0 ≤ s ≤ 1.

(13)

The state space is now 3 dimensional (σA, σB, s), and K = [b; 1− b]× [b; 1− b]× [0; 1].

4.6 LanguageResilience system [Bernard et al., 2007]
We are interested in determining if the Abrams-Strogatz language system (without bilin-
guals) can come back to the viability kernel. We attribute a cost for the system for each
time step such that σA < b or σA > 1− b. This can be expressed as a 3 dimensional via-
bility problem, where the state is (σA, s, C), with C representing the cost. The equations
ruling the system in discrete time are:

σA(t + dt) = σA(t) + dt.σ′A(t) (14)
−c.dt ≤ s(t + dt)− s(t) ≤ c.dt (15)

C(t + dt) =

{
C(t) if σA < b or σA > 1− b
C(t)− λdt otherwise, (16)

with λ > 0. We also specify a maximal cost CM . For λ = 1, the cost represents the
time the system is outside K = [b; 1 − b] × [0; 1]. The state space is 3 dimensional
H = [0, 1]× [0, 1]× [0, CM ].

4.7 LakeResilience system [Martin, 2004]
We are interested in determining if the lake system can come back to the viability kernel.
We attribute a cost for the system for each time step such that P > Pmax or L < Lmin.
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This can be expressed as a 3 dimensional viability problem, where the state is (L, P, C),
with C representing the cost. The equations ruling the system in discrete time are:

P (t + dt) = P (t) + dt.P ′(t) (17)
−c.dt ≤ L(t + dt)− L(t) ≤ c.dt (18)

C(t + dt) =

{
C(t) if P < Pmax and L > Lmin

C(t)− λ(x)dt otherwise, (19)

with λ > 0. We use a cost function consisting of two weighted terms, the first term,
which corresponds to the ecological cost, is the time spent in an eutrophic state, the
second one, which is an economic cost, measures the duration of the period of negative
profits weighted by the norm of these negative profits. The function that associates x
with the minimal cost over all trajectories starting at x is then defined by:

λ(x) = min
x(.)

(c1

∫
χP≥Pmaxx(τ)dτ + c2

∫
(Lmin − L)χL≤Lmin

x(τ)dτ) (20)

with χP≥Pmax(x) = 1 if P ≥ Pmax , χL≤Lmin
(x) = 1 if L ≤ Lmin and 0 otherwise.

The state space is 3 dimensional H = [0, Lmax]× [0, PM ]× [0, CM ], with PM > Pmax.
The cost function λ(x) equals 0 if x ∈ K = [Lmin, Lmax]× [0, Pmax].

4.8 ThinTarget system
In the system in 2 dimensions (x, y), we consider the problem of reaching a thin target
C = [0, 0]. The system must stay in the space K = [−1; 1]× [−1; 1]. The dynamics is
defined in discrete time: {

x(t + dt) = x(t) + y(t)dt
y(t + dt) = y(t) + u(t)dt,

(21)

with the control u(t) ∈ [−1; 1].
We approach the capture basin in finite time T of the system (for example, try T = 1).

4.9 Zermelo system [Cardaliaguet et al., 1997]
The problem is derived from the famous Zermelo problem. The aim is to drive a boat
in a river, such that it can reach an island as quick as possible, without leaving the
constraint set. The state (x, y) represents the position of the boat in the river, where the
current decreases when it approaches the boundary of the river. The constraint set K
represents the river and C the island to reach. At each time step, the captain of the boat
can control its acceleration u and its direction θ. The system in discrete time can be
defined by: {

x(t + dt) = x(t) + (1− 0.1y(t)2 + u cos θ)dt
y(t + dt) = y(t) + (u sin θ)dt.

(22)

For example, we can put K = [−6; 2] × [−2; 2] and C = B(0; 0, 44), where B is the
unit ball in R2. Controls must remain in a given interval: u ∈ [0; 0, 44] and θ ∈ [0; 2π].
The boat must reach the island before time (try T = 7).
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4.10 CarOnTheHill system [Moore and Atkeson, 1995]
The system is in 2 dimensions: the car position x and its velocity x′. The car can be
controlled thanks to a continuous variable in one dimension: the thrust a. The aim is to
keep the car in a given constraint set, while reaching the target as fast as possible, with a
small velocity: C ∈ [0, 5; 0, 7]× [−0, 1; 0, 1]. The car must remain in the constraint set
K = [−1; 1] × [−2; 2]. The thrust is limited a ∈ [−4; 4]. The evolution of the velocity
x′ is function of the position x :

x′′ =
a√

1 + (H ′(x))2
− gH ′(x)

1 + H ′(x)2
, (23)

with g = 9.81 and :

H ′(x) =

{
x2 + x if x < 0

x/
√

1 + 5x2 if x ≥ 0.
(24)

We consider the dynamical system in discrete time:{
x(t + dt) = x(t) + x′(t)dt
x′(t + dt) = x′(t) + x′′(t)dt.

(25)
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5 User Guide for the java executable file
If you use the SVMVC.jar file, you can only use the software GUI mode.

The software is formed by two main windows: the console window and the display
window. The console window allows the modification of the parameters, start and stop
approximation, save and load the results, control the system. The display window
allows one to visualize the approximation of the viability kernel or the resilience values,
and trajectories if the user chooses to control the system.

The next subsection describes the different parts of the console window, and all the
parameters that can be chosen by the user.

5.1 Console window
The console window contains 7 parts. When modifying one parameter, you have to go
inside a text box of the second part (that defines the parameters of the model) and press
enter, in order to take into account the modifications.

5.1.1 Choosing the system

The first part, at the top left, allows to choose the dynamical system.

Figure 2: First part of the console window

5.1.2 Definition of parameters of the models

The second part, called Population in the figure 1, allows the definition of the viability
constraint set and the parameters of the model.

Figure 3: Second part of the console window

Table 1 describes the different parts of the window. There are as many text boxes as
needed to choose the lower and upper bound of K and the control space. If the model
has parameters, there are also special labels and text boxes to choose their values (not
represented in the figure 3).
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Element Label Description
text box lower dim i lower bound of K for the dimension i
text box upper dim i upper bound of K for the dimension i
text box lower control dim j lower bound of the jth control dimension
text box upper control dim j upper bound of the jth control dimension
label label of parameter k label of the kth parameter
text box value of parameter k value of the kth parameter
text box dt simulation time step
text box mu parameter for the gradient descent (a small

value makes the simulation longer, a large
value makes the simulation shorter but the
optimization can be false)

text box resolution number of points by dimension

Table 1: Details of the second part of the console window

5.1.3 Viability controller

The third part, called the Viability controller, allows one to choose the number of steps
(instead of looking if the system is viable at the next time step, we can look if it is viable
at n time steps), and the number of steps at the first iteration (at the first iteration, the
procedure is less robust, and it is better to use few time steps). It also allows the visu-
alization the trajectories starting from each point of the grid, by checking trajectories?.

Figure 4: Third part of the console window

5.1.4 SVM configuration

The fourth part concerns the configuration of the SVM. To compute the SVM function,
we use the library LibSvm (for more details about the library and its parameter settings,
go to http://www.csie.ntu.edu.tw/~cjlin/libsvm/).

You can choose some default parameters, detailed in figure 5. Parameter epsilon sets
the tolerance of the termination criterion for the SVM computation algorithm. Its value
must be small. The SVM type to choose is C. The value of C must be large, in order
to fulfill the condition of the theorem (for more information about the theorem, see
[Deffuant et al., 2007]). With the gaussian kernel, the SVM function can approximate
all the classification functions (only use this kernel, the others are not functional). With
the gaussian kernel, you have to choose the gamma (γ, see glossary) parameter, that
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allows the control of the shape of the SVM function: a small value of gamma gives
smooth shapes while a large value allows the approximation of more irregular shapes.

Figure 5: Fourth part of the console window

5.1.5 Execution and control

The fifth part concerns the execution.

Figure 6: Fifth part of the console window

Table 2 describes the different buttons of the fifth part.

Button Description
Execution runs the program until the final approximation of the viability kernel

is reached or the resilience values are computed
Step by step shows all the iterations of the algorithm
2D view activates or deactivates the display window
Config Visu configures the display, by opening a configuration display window

(see next paragraph (display configuration window))
Export results export the results in a .txt file (see next paragraph (Export file

structure))
Controller configures the controller, by opening a controller configuration

window (see next paragraph (controller configuration window))
Load project loads an approximation you have already made and saved
Save project saves the results in 2 files: .log and .svm files.

Table 2: Details of the second part of the console window
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Display configuration window
Figure 7 presents the window of the configuration display. In this window, you can
choose the dimension to display, and the value of the other dimensions for the display
of the slices in 2D. If you modify the values or the dimensions to display, you have
to press the Update 2D view to see the results on the display window. You can also
activate or deactivate the view of the theoretical curves of the viability kernel (if they
are available). You can choose whether or not to display the points of the grid. You can
also only visualize the points that are support vectors by pressing the Only SV button.
For the resilience values computation, you’ll have another window (on the right of figure
7). Here, you can choose the number of level lines of the cost you want to display and
the difference between two level lines.

Figure 7: Configuration display window

Export file structure
The .txt file contains the list of grid points and the SVM function parameters. The first
part of the file is devoted to the list of the grid points. Each line corresponds to a point:
each coordinate for all the dimensions are separated by a tab, and at the end of each line,
separated by a tab from the coordinate of the last dimension, the label of the point (+1
if the point is viable,−1 if it is not). The list of points and the SVM function parameters
are separated by an empty line. The SVM function is defined by a list of support vectors
points: one point by line, coordinates separated by tab, at the end of each line, separated
by a tab from the coordinates, the value of αi (see glossary). The last line of the line
corresponds to the value of b (see glossary).

Controller configuration window
Figure 8 presents the window of the configuration display.

This window allows the definition of the parameters of the controller (heavy con-
troller here). To use this button, you must have already run the algorithm until the final
approximation was reached. In this window, you choose the starting point of the tra-
jectory (scaled in the space [0, 1]d). You also choose the number of time steps of the
trajectory. The check box cautious policy indicates that this is a heavy controller and
that you have to choose the number of time steps of anticipation and the value of the
SVM to define the security distance. This value must be greater than −1. A value of
−1 value indicates that you allow no security distance (it correspond to the SVM value
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Figure 8: Viability controller window

that define the boundary of the approximation). The value to choose depends on the
security distance you want, and also on the number of points in each dimension. The
finer the grid, the larger the SVM value must be. The greater the security distance, the
bigger the value of the SVM must be. You can check the distance obtained in the display
window, the security distance is colored light blue. Press the Display trajectory button
to visualize the result. Press the Export trajectory button to export the list of points of
the trajectory in a .txt file. This file contains the list of points, one line by point, and the
coordinates are separated by tab.

5.1.6 Indicators

The sixth part gives some indicators: the current number of iterations (for a step by
step execution) or the final number of iterations (for execution mode), the number of
learns (correspond to the number of computation of the SVM function, it is the same
that the number of iterations in the version 1.0 of the algorithm, but will be different
when the later version, including active learning, would be available), the final time
of the approximation, the number of points of the whole grid, the number of support
vectors of the current SVM (step by step mode) or the number of SVs of the final SVM
(execution mode). The variable M1 gives an indication of the progress of the algorithm.
It indicates the number of grid points that have had their labels changed, relative to the
size of the whole grid. A small value can mean that this is one of the last iterations of
the approximation.

5.1.7 Log of the execution

The seventh part is the log of the execution. It summarizes the parameters chosen for
the approximation, and during the run, indicates the progression of the algorithm. When
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Figure 9: Sixth part of the console window

the system is being controlled, it also indicates the current point of the trajectory and
the control used.

Figure 10: Seventh part of the console window
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5.2 Display window
The display window represents, in 2D, the current or the final approximation of the
viability kernel. The viability kernel is represented in dark blue. The points of the
grid are also displayed: a yellow point represents a viable point and a red point, a
non-viable point. The black lines represent the boundary of the real viability kernel (if
the theoretical curves are available). If resilience is computated and if chosen on the
configuration display window, the level lines of the resilience values are drawn. The
colors of the level lines are a function of the resilience values: blue (high resilience
value) to red (low resilience value). The given resilience values does not correspond to
the value of the point x, but to the value of an initial point that will jump to that point x.

Figure 11: Display window

To change the size of the window, drag the window corner to enlarge or diminish it
and click 3 times on the drawing. To zoom without changing the size of the window,
click 2 times. To come back to the initial size, click 3 times.
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6 User guide for adding a dynamical system
All the implementations must be only made in the package Model.
First, in the class Model.java:

• in the array names_, add the name of your new dynamical model;

• in the method GetSytem(String inName), add a test for your new model.

After that, you have to create a new class file, with the name of your model (for example,
MyClass.java), in the package Model. Depending on the results you want, you have to
extend your class from:

• Dynamic_System if you want to approximate viability kernels;

• Dynamic_System_Target if you want to approximate capture basins;

• Dynamic_System_Resilience if you want to compute resilience values.

6.1 Approximating viability kernels
You have to define the constructor of MyClass, with the following fields in the same
order:

N◦ Fields Type Comments
1 name_ String name of the system

nbDim_ int dimension of the state space
2 nbDimControl_ int dimension of the control space

nbDimParam_ int number of parameters
3 initSystem() method allow to initialize arrays of right size

lowerBoundState_[i] float lower bound of the ith dimension of K
upperBoundState_[i] float upper bound of the ith dimension of K

4 lowerBoundControl_[j] float lower bound of the jth control
upperBoundControl_[j] float upper bound of the jth control
labelParam_[k] String label of the kth parameter
valueParam_[k] float value of the kth parameter
mu_ float param of the gradient descent

5 resolution_ int number of points by dimension
dt_ float dt value
theoricCurves_ boolean true if theoretical curves available

Table 3: Fields for Dynamic_System

The type MyClass.java must implement the following inherited abstract method:
Method Params Returns
computePhi(Point inP, Point inU, double dt) inP: x(t) Point
compute ϕ(x(t), u(t)) inU: u(t) ϕ(x(t), u(t))

dt: dt value
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6.2 Approximating capture basins
You have to define the constructor of MyClass, with the fields defined in table 3.

The type MyClass.java must implement the following inherited abstract method:
Method Params Returns
computePhi(Point inP, Point inU, double dt) inP: x(t) Point
compute ϕ(x(t), u(t)) inU: u(t) ϕ(x(t), u(t))

dt: dt value
centerOfTheTarget(int i) i: dimension float
gives the ith coordinate of the center of the target ith coordinate
isInTheTarget(Point inP) inP: x(t) boolean
tests if x(t) ∈ C true if x(t) ∈ C

6.3 Computing resilience values
You have to define the constructor of MyClass, with the fields defined in table 3 plus (in
the right order):

N◦ Fields Type Comments
2 nbCost_ int number of parameters for the cost

lowerK_[l] float lower bound of the lth dimension of K
4 upperK_[l] float upper bound of the lth dimension of K

with l ≤ (nbDim_− 1)
valueCost_[m] float value of the mth cost

Table 4: tab:Fields for Dynamic_System_Resilience

The type MyClass.java must implement the following inherited abstract method:
Method Params Returns
computePhi(Point inP, Point inU, double dt) inP: x(t) Point
compute ϕ(x(t), u(t)) inU: u(t) ϕ(x(t), u(t))

dt: dt value
computeCost(Point inP) inP: x(t) float
gives the cost of a point x(t) cost for x(t)
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7 User guide for running the program in the batch
mode

7.1 Running the program
To run the software in a batch mode, files with extension .simu are needed. They
contain all the information needed. The next subsection details the construction of a
.simu file.

To run the program in a batch mode, write the following instruction in a command
window:

C:\SVMVC v1.0\bin > java Appli/Batch Conso.simu

Replace Conso.simu by the name of your file.
At the end of the execution, you’ll have the results written in the command window:

Execution --> Conso Consumption December 11, 2007 5-31-44 PM CET/
Results
9 iterations
9 learns
18 SV
961 points
Computed in 0 h 0 m 9 s.

The execution creates 2 files: one with a .svm extension, one with a .log extension.
The text in the console indicates which directory the files are saved in (here, in a direc-
tory called Conso Consumption December 11, 2007 5-31-44 PM CET/ ), the number of
iterations and learns needed to obtain the final approximation, the number of support
vectors of the last approximation and the size of the whole grid. It also indicates the
time needed to compute the final approximation. To visualize the approximation, you
have to run the program in the GUI mode, either by using the .jar file or by executing
the following instruction in a command window:

C:\SVMVC v1.0\bin > java Appli/GUI

In the GUI console, use the load project button and select the .svm file to visualize the
results.

The batch mode also allows one to get the details of all the iterations, by using the
parameter−v in the instructions (equivalent to the step by step execution in GUI mode):

C:\SVMVC v1.0\bin > java Appli/Batch Conso.simu -v

At the end of the execution, you’ll have the results written:

Execution --> Conso Consumption December 11, 2007 5-36-28 PM CET/
Iter. 1 - M1 = 23.51717%
Iter. 2 - M1 = 9.781478%
Iter. 3 - M1 = 3.850156%
Iter. 4 - M1 = 1.2486992%
Iter. 5 - M1 = 0.7284079%
Iter. 6 - M1 = 0.41623312%
Iter. 7 - M1 = 0.20811656%
Iter. 8 - M1 = 0.10405828%
Iter. 9 - M1 = 0.0%
Results
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9 iterations
9 learns
18 SV
961 points
Computed in 0 h 0 m 10 s.

Here, there are as many .simu and .svm files saved as the number of iterations.

7.2 Constructing a .simu file
The .simu files must be carefully constructed. These files are composed of lines (one
line per parameter to define). For each line, indicate the name of the parameter you
want to define, and their values must be located at the right of ":". The names of the
parameters are not important (they are only for recall), but they have to be defined in the
right order. Table 5 gives the different components of the file.

Lines Description
name name of the system, such that written in the attribute

names_ of the Model class
lower K i value of the lower bound of K for dimension i

(only for resilience computation)
upper K i value of the upper bound of K for dimension i

(only for resilience computation)
Comments first lower and upper for dimension 1, lower and

upper for dimension 2 etc.
cost j value of the jth cost (only for resilience computation)
lower dim k lower bound of K for the dimension k

(lower bound of H if resilience computation)
upper dim k upper bound of K for the dimension k

(upper bound of H if resilience computation)
Comments first lower and upper for dimension 1, lower and

upper for dimension 2 etc.
lower control dim l lower bound of the lth control dimension
upper control dim l upper bound of the lth control dimension
value of parameter m value of the mth parameter
dt simulation time step
mu parameter for the gradient descent
resolution number of points by dimension for the simulation
epsilon tolerance of termination criterion for SVM computation
svm type 0 for a C-SCM
C value of C parameter, if C-SVM
kernel type 2 for a gaussian kernel
gamma gamma parameter for the SVM
number of steps number of steps
number of steps init number of steps at the first iteration

Table 5: Details of the parameters of a .simu file
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The following code gives an example of a .simu file for the lakeResilience system:

Name : LakeResilience
lower K 0 : 0.1
upper K 0 : 1
lower K 1 : 0
upper K 1 : 0.5
C1 : 1.5
C2 : 5
lower dim 0 : 0
upper dim 0 : 1
lower dim 1 : 0
upper dim 1 : 1
lower dim 2 : 0
upper dim 2 : 6
lower control 0 : -1
upper control 0 : 1
q : 8
r : 1
m : 1
b : 0.8
dt : 0.1
mu : 0.9
resolution : 11
epsilon : 0.0005
svm type : 0
c : 30000
kernel type : 2
gamma : 4
nb steps : 2
nb steps init : 1
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