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PATRES: Savanna case study

Overview:

1) Start with a detailed, site-specific savanna model

2) Identify essential pattern dynamics of the model

3) Build a low dimensional, mathematically tractable
approx. capturing key pattern dynamics

4) Apply viability theory to approximate model
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Savannas 

Defined by:

1) Continuous grass layer
2) Discontinuous tree layer

Cover ~20% of Earth’s terrestrial surface area

Harbor considerable biodiversity

Economically significant as grazing lands
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Current threats to savannas

Human population growth

Global climate change

Changing land use patterns

Overexploitation by humans
-Specifically overgrazing

Bush encroachment
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Savanna management

Must balance system integrity against economic goals

Price of failure is high. Bush encroached savannas effectively 
useless for grazing

Manage by manipulating fire and/or grazing regimes
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“Structurally realistic” savanna models

Relatively complex models used to integrate knowledge 
on particular savannas

Typically stochastic. Include many parameters and variables

Often reproduce key features of focal site

Seldom used for management purposes
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The Jeltsch model

Developed by Jeltsch and colleagues in 1990’s 

Focuses on a South African savanna

Integrates 30+ years of detailed empirical data from this site

Widely cited and still widely used

Jeltsch et al. 1996; 1997a, b; 1998;1999
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Complex model, but complex dynamics?

Dynamics of macroscopic state variables might not be
complicated

This appears to be the case for the Jeltsch model

Idea: Use the relatively simple dynamics of a few key 
patterns to reduce model dimensionality
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Targets of analysis

Focus on trees (and grasses):

1) Population density time series

2) Distance-dependent spatial pattern (g statistic)
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Logistic-like population growth
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Normalized pair correlation statistic
Stoyan & Stoyan 1994; Condit    
et al. 2000
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Point-pattern analysis

Where    is the density of the point pattern, and Nx Ax are the # of 
neighbors and area of the annulus, respectively, at dist. x.
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Strong signatures of competition and 
short dispersal

Far neighborhood clustering

Near neighborhood regularity

Decay to randomness thereafter
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Key patterns

Logistic-like population growth

Spatial pattern:
1) Near neighborhood regularity
2) Far neigh. clustering
3) Decays to randomness thereafter

Suggests a spatial logistic model with 2 interaction scales
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Model overview

Square lattice, periodic boundary conds., two states:
tree (1) or grass (0)  

Prop. of sites in state 1 is     and in state 0 is   

Model is an extension of the contact process

Tree dispersal & competition occur within defined (Moore) 
neighborhoods

1ρ 10 1 ρρ −=
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Interaction neighborhoods

Define two neighborhoods—
”near” and “far”

Assume:

1) establishment comp.
occurs only over near neigh.

2) birth occurs in both near & far
neighborhoods

3) Neighborhood status is 
symmetric

Focal site

Near Far
Disp. scale > Comp. scale
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Birth

fn zz
b
+

=β

If it lands on a grass occupied site, it has a chance to 
establish 

If an seed lands on a tree occupied site, nothing happens

Each site within birth (n + f) neighborhood of a tree receives 
offspring at rate:

Trees reproduce at constant rate b
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Establishment

Given birth, the seed establishes with probability
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Moment equations

An open hierarchy of equations of the form
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Multi-scale pair approximation, Ellner 2001

By itself, this is useless, but mean-field and pair approximations
make this approach tractable
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Eqn. for mean is a simple balance equation
prop. unocc. 
sites

prob. survive 
comp.

prob. survive 
fire

Moment approximations: Mean dynamics

Birth DeathEstablishment

Local density terms carry spatial information

# near neighs # far neighs
per neigh. 
contribution
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Moment approximations: Density

Pair:
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Multiscale pair approximation: Ellner 2001

Mean field:
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Pair Approx.: Pair correlations
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Local dens. can be written in terms of pair and singlet probs.

Each int. neighborhood requires a pair dens. eqn.

Full analysis of PA savanna model in Calabrese et al. (In press, American Naturalist)

Near:

Far:
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Back to the Jeltsch model

We have an equation for 

g statistics can be derived from PA:

PA has two free parameters: b and     (plus    )

They can be estimated by fitting the PA to the Jeltsch model
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Calculating the death rate

Only “background” mortality important for adult trees

Jeltsch et al. 1996 describe the (background) 
mortality process:

1) Established adults survive to age 120

2) Linear increase in the mortality rate
from 120 to a max. age of 250.

Can use this info to calculate the mean lifespan     , and then
calculate the death rate in the PA as:

a

a/1=α
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Average life span
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Fit PA to 3 patterns

4.4=b 3.1=δ
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Transient dynamics
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Adding fire

Negatively affects trees by killing primarily juveniles

Fire regimes can be manipulated to control trees

Direct: Prescribed burns
Indirect: Varying grazing pressure

Fire and grazing represent key control actions
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First fit competition model w/o fire

7.11=b 1.1=δ
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Fire in the Jeltsch model
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Fire in pair approx.

affects fire freq.

w determines abruptness 
and location of trans.

c rescales x-axis

σ

( )
( ) ( )ww

w
Surv

F cc
cP

)1(
)1(1

1

1

ρσ
ρ
−+

−
−=



Page 32

Comparing the transitions

14=w322=c
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Grazing
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Summary of Approximation
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A viability problem based on MF approx.
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Redefine system to include dynamics of control: 

Subject to constraints:
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Viability kernels
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Quantifying resilience
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Conclusions

Path from Jeltsch mod. to viab. analysis is long & winding

Formal approximation frameworks (e.g., moment equations)
cannot be applied directly to models of arbitrary complexity 

Main value of this exercise is as a proof of concept

Next step is to apply a control policy identified using the 
approx. mod. to the full Jeltsch mod.
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Thanks!

justin.calabrese@ufz.de
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